bootstrap置信区间如何求

广告:宝塔Linux面板高效运维的服务器管理软件 点击【 https://www.bt.cn/p/uNLv1L 】立即购买

bootstrap置信区间如何求

bootstrap置信区间:

假设总体的分布F未知,但有一个容量为n的来自分布F的数据样本,自这一样本按有放回抽样的方法抽取一个容量为n的样本,这种样本称为bootstrap样本。相继地、独立地自原始样本中抽取很多个bootstrap样本,利用这些样本对总体F进行统计推断,这种方法称为非参数bootstrap方法,又称自助法。

使用bootstrap方法可以求得变量(参数)的置信区间,称作bootstrap置信区间。

bootstrap置信区间:

使用Python计算bootstrap置信区间:

这里以一维数据为例,取样本均值作为样本估计量。代码如下:

import numpy as npdef average(data):    return sum(data) / len(data)def bootstrap(data, B, c, func):    """    计算bootstrap置信区间    :param data: array 保存样本数据    :param B: 抽样次数 通常B>=1000    :param c: 置信水平    :param func: 样本估计量    :return: bootstrap置信区间上下限    """    array = np.array(data)    n = len(array)    sample_result_arr = []    for i in range(B):        index_arr = np.random.randint(0, n, size=n)        data_sample = array[index_arr]        sample_result = func(data_sample)        sample_result_arr.append(sample_result)    a = 1 - c    k1 = int(B * a / 2)    k2 = int(B * (1 - a / 2))    auc_sample_arr_sorted = sorted(sample_result_arr)    lower = auc_sample_arr_sorted[k1]    higher = auc_sample_arr_sorted[k2]    return lower, higherif __name__ == '__main__':    result = bootstrap(np.random.randint(0, 50, 50), 1000, 0.95, average)    print(result)
登录后复制

输出:

(20.48, 28.32)
登录后复制

推荐:bootstrap入门教程

以上就是bootstrap置信区间如何求的详细内容,更多请关注9543建站博客其它相关文章!

广告:SSL证书一年128.66元起,点击购买~~~

9543建站博客
一个专注于网站开发、微信开发的技术类纯净博客。
作者头像
admin创始人

肥猫,知名SEO博客站长,14年SEO经验。

上一篇:bootstrap的12栅格系统是什么
下一篇:值得收藏的CSS盒子模型属性详解

发表评论

关闭广告
关闭广告